He/H variation in the solar wind over the solar cycle

JUSTIN C KASPER SMITHSONIAN ASTROPHYSICAL OBSERVATORY

NESSC (CfA) 27 October 2008

Who is involved

• Kasper (SAO)

- Bennett Maruca (Harvard University), new analysis of Wind Faraday Cup data
- Alan Lazarus, Mike Stevens (MIT), He/H variation over Carrington rotation and solar cycle
- Harlan Spence, Nicholeen Viall (BU): short period He/H variation in the solar wind
- Sarah McGregor (BU): Mapping solar wind He/H to solar sources

• Ogilvie and Hirshberg (1974); Feldman et al (1978)

• Why does He/H vary over the solar cycle?

Helium and magnetic fields

Helium spectral lines in stellar atmosphere

300 0.08 Slow Wind (<450 km/s) alo 3 All Speeds (<450 km/s)</pre> Numb 0.06 200 He/H 0.04 Sunspot 100 0.02 0.00 2000 1980 1990 1960 1970 Year

Helium in solar wind (1960-2000)

Glagolevskij et al (2006)

- Bp Stars ("p" for Peculiar)
- $\sim 10 \mathrm{x}$ solar mass
- Young Bp stars poor in heliumStrong magnetic fields 10kG

Aellig et al (2001)

- Ogilvie and Hirshberg (1974); Feldman et al (1978)
- He/H in solar wind correlated with solar cycle

Variation of solar wind speed Latitude structure over the solar cycle

Variation of solar wind speed Speed related to magnetic expansion

Parker (1958) model of solar wind: supersonic acceleration in DeLaval nozzle Modification: field expansion controls the nozzle

The link between speed and He/H Regulation of Coulomb drag

Helium does not experience the Parker mechanism directly Instead Coulomb coupling to accelerated hydrogen is needed

- Early explanation for dependence on level of solar activity:
 - Observation: Solar wind near magnetic reversal, the heliospheric current sheet (HCS), has low He/H
 - Slow solar wind near HCS, and HCS more often in equatorial plane during solar minimum
 - Fast wind and CMEs, seen more at maximum, have high He/H
- So is dependence just due to wind speed changing?

Updated version of Aellig et al [2001] Figure 2

Six-Month Periodicity

Carrington rotation averages of He/H in two narrow speed windows during solar minimum

He $= A_0 + A_1 \sin(\omega t + \phi)$

- Fit Carrington averages with sinusoid
- Six month periodicity
- Maxima in He/H as Earth leaves heliographic equatorial plane
- Consider:
 - Significance
 - Offset A₀
 - Amplitude A₁

Possible explanation for latitudinal gradient Long lived magnetic loops

- Previous models have two flaws
 - Magnetic topology is simple – expanding field
 - Structures are stationary in time
- New time dependent models introduce gravitational settling
 - Endev et al. (2005)
 - Helium settles to bottom of loops
 - Decreased He/H at loop top
- Another option: washed out differential flow

Dependence of A_0 on speed

- A₀ is an extremely linear function of V for speeds between 275-500 km/s
- This is not predicted analytically or numerically
- Extrapolates to a "vanishing speed" of 265 km/s

Dependence of A_0 on speed

- A₀ is an extremely linear function of V for speeds between 275-500 km/s
- This is not predicted analytically or numerically
- Extrapolates to a "vanishing speed" of 265 km/s
- Histogram of distribution of solar wind speed at 1 AU over mission
- Why does this correspond to lowest observed solar wind speeds?

Current solar minimum

- Processed Wind data up through this August
- Examine He/H in the current solar minimum

Linear dependence with speed is back

 Observations from last three years show solid relationship between He/H and speed

 Cleaner than last solar minimum by eye

Conclusions

 Solar minimum He/H dependence on speed (and implied vanishing speed) have returned
Should get more precise value for minimum speed

• Latitude gradient not seen yet

- Wait for HCS to align with equator
- Employ mapping methods to relate to coronal structure

Additional work

- Composition and charge state data with ACE are there freeze-in temperature or minor ion abundance gradients?
- Relate He/H variation on small timescales to non-steady solar wind sources

