Cluster observations of a reconnection diffusion region: Energetic electrons and magnetic islands

Li-Jen Chen

Space Science Center University of New Hampshire

collaborators

N. Bessho, A. Bhattacharjee, P. Puhl-Quinn, C. Mouikis, Space Science Center, UNH; S. Imada, National Astronomical Observatory, Osawa; S. Muhlbachler, P. Daly, MPI, Lindau; B. Lefebvre, Imperial College, UK; A. Fazakerley, Mullard Space Science Lab; E. Georgescu, MPI, Garching; A. Vaivads, Y. Khotyaintsev, Swedish Institute of Space Science

Mechanisms for e acceleration

- Acceleration by DC E -
 - 1) At the X line (Hoshino, 2005; Pritchett, 2006);
 - 2) Along separatrices in guide field reconnection (Drake et al., 2005)

Fermi acceleration due to contracting islands
 (Drake et al., 2006)

e bursts and B pulses: ~ 1-1

e bursts and spiky E (significant DC, but not necessarily along B)

Summary of B pulse features

bipolar Bz

- decreases in Bx
- some have unipolar By
- Bz pulses rise gradually and fall sharply

What are the magnetic pulses?

- Are they due to fast passages of X lines? No, because electrons are hot throughout the B pulse time.
- Are they due to localized current structures?
 Yes!

Establish a map of electron distribution functions 2D PIC

2D PIC results: cold vs. hot

Electrons are hot within bipolar Bz pulses

Harris Sheet + 6 line currents

If a periodic chain of islands...

Fadeev solutions

Х

Learned from the simple models:

- localized current structures can account for observed Bx and Bz.
- Asymmetry of Bz pulses is likely due to that there are only a few magnetic islands.

4 s/c view of B islands

Runov et al., 2003

Core field correlation: C2 and C4

Bz correl. (C2,3,4): y dependence

Density enhances within islands

Electron flux peaks at high n core

E fluctuations and DC E at one edge of islands

Sum. of observed island properties

- bipolar Bz
- unipolar By (not always)
- DC E and E fluctuations at one edge
- highly enhanced n within
- hot electrons within
- 1-1 correspondence with major energetic electron bursts.

Energetic electrons at ECS

^{*} Electron Current Sheet (ECS)

C1

Summary

- The flux of energetic electrons up to 100 keV peaks at the high density core within magnetic islands, a feature that is yet to be explained.
- Data support electron acceleration within islands and at the electron current sheet.
- The existence of islands and the asymmetric properties of islands are consistent with guide field reconnection.