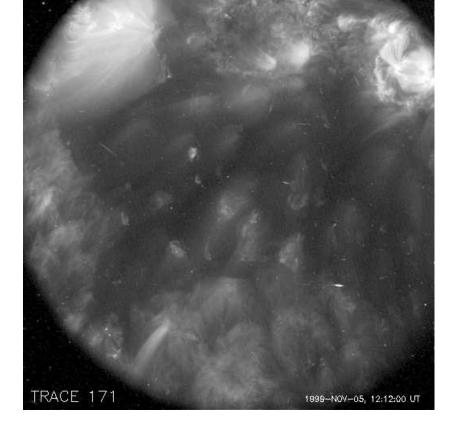
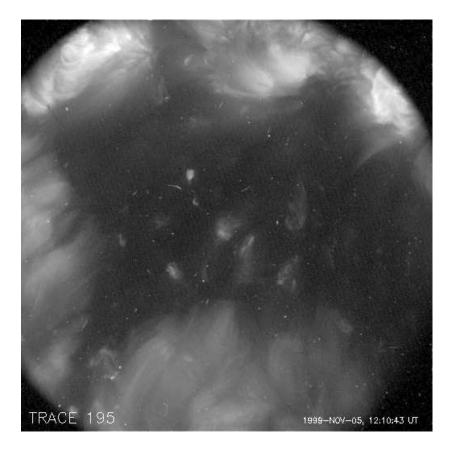
- Equatorial-extension coronal holes rotate nearly rigidly and the boundaries of these coronal holes evolve slowly.
- Previous studies using SXT data have yielded no direct evidence of magnetic reconnection near the boundaries [Kahler & Hudson, 2002].
- However, Magnetic reconnection must occur at the boundaries for the coronal hole to remain stable over several Carrington rotations.
- TRACE data will yield high spatial and temporal resolution compared to previous studies

Criteria for Observations

- 2-3 days of observations to make sure coronal hole is not differentially rotating.
- Coronal hole should have a large latitude dissent.
- Soft X-ray or He 10830 Å images to determine if area is a coronal hole
- TRACE 195 Å channel with 171 Å as context data


Candidate Coronal Hole Observations


Date 1999 Nov 5 1999 Nov 6 1999 Nov 7 1999 Nov 8	11:15-24 2:30-24	TRACE λ 's 171, 195 171, 195 171, 195 171, 195 171, 195	x-y coords (-520, 80) (-323,98) (-188, 93) (24,96)	cadence (s) 35 35 40 40	Notes weak candidate
2005 April 5	3-24	171	(611, 263)	45	REJECTED

References

[Kahler & Hudson, 2002] Kahler, S.W., Hudson, H.S., 2002, Boundary Structures and Changes in Long-Lived Coronal Holes, ApJ, 574, 467-476

