IMPLICATIONS OF CME DEFLECTION ON THE FRACTION OF ICMES OBSERVED AS MAGNETIC CLOUDS

1

C. KAY (BU), M. L. STEVENS (CFA), M. OPHER (BU), J. C. KASPER (UMICH-AOSS/CFA)

KAY ET AL. 2014, SUBMITTING SOON!

QUICK DEFINITIONS

CORONAL MASS EJECTION (CME) - EJECTA LEAVING THE SUN WHICH IS VIEW REMOTELY

INTERPLANETARY CME (ICME) - INTERPLANETARY
COUNTERPART OF A CME WHICH IS OBSERVED IN SITU

MAGNETIC CLOUD (MC) - SUBSET OF ICMES WHICH HAVE SMOOTHLY ROTATING ENHANCED B AND LOW PLASMA BETA (SIGNATURE OF A FLUX ROPE)

NON-MC - SUBSET OF ICMES THAT ARE NOT MCS

ICMEs = MCs + NON-MCs

OBSERVATIONS OF MC/ICME

CANE + RICHARDSON LIST OF NEAR-EARTH ICMES

SOLAR CYCLE 23: RATES OF ICMES AND MCS TEND TO DIVERGE DURING HIGH SOLAR ACTIVITY (CANE & RICHARDSON 2003, RICHARDSON & CANE 2004, RILEY+ 2006, RILEY & RICHARDSON 2013)

SOLAR ACTIVITY INCREASES
 PERCENTAGE OF MCS
 DECREASES (MC% = #MCS / #ICMES)

TREND PERSISTS THROUGH OTHER SOLAR CYCLES

FIGURE FROM RICHARDSON & CANE 2004

CAUSES OF VARIATION?

CAN USE STATISTICAL PROPERTIES OF MCS AND NON-MCS TO RULE OUT MANY SUGGESTIONS (RILEY & RICHARDSON 2013)

© CMES BEGIN COMPLICATED AND "RELAX" INTO MC

MC-MC INTERACTIONS RESULT IN NON-MC

SUGGESTIONS THAT CANNOT BE ELIMINATED

COMPLEXITY OF CMES INCREASES THROUGHOUT SOLAR CYCLE

WO DISTINCT CME MECHANISMS

MC VS. NON-MC IS SIMPLY MATTER OF SPACECRAFT PERSPECTIVE

MCS AS OBSERVATIONAL BIAS

ASSUME ALL CMES HAVE A FLUX ROPE

SPACECRAFT MUST ENCOUNTER FLUX ROPE TO SEE AS MC

GLANCING ENCOUNTERS
 = NON-MC

 EXPECT CMES FROM LOWER LATITUDES MORE LIKELY TO BE MCS → NOT OBSERVED (RILEY+ 2006)

EFFECTS OF DEFLECTION

- DEFLECTION CAN AFFECT WHETHER A CME IS OBSERVED AS ICME (KILPUA+ 2009)
- DEFLECTION TENDS TO MOVE CMES AWAY FROM HIGH MAGNETIC ENERGY TO LOW MAGNETIC ENERGY (GOPALSWAMY+ 2009, GUI+ 2011, LUGAZ+ 2011, SHEN+ 2011, MAKELA+ 2013, XIE+ 2013)

MAGNETIC DEFLECTION MODEL FORECAT (KAY+ 2013, KAY & OPHER 2014, IN PREP) SHOWS THAT CMES DEFLECT TOWARD "MAGNETIC MINIMUM" (HELIOSPHERIC CURRENT SHEET (HCS) ON GLOBAL SCALES)

DEFLECTION + MC%

IF ALL CMES CONTAIN A FLUX ROPE AND CMES TEND TO DEFLECT TOWARD THE HCS THEN THE MC% SHOULD VARY WITH THE DISTANCE BETWEEN THE EARTH AND THE HCS

EXPECT A HIGHER PERCENTAGE OF MCS WHEN THE HCS IS CLOSE TO EARTH

POSSIBLE DEFLECTIONS

DEFLECTION CAN MOVE CME TOWARD OR AWAY FROM EARTH DEPENDING ON RELATIVE ORIENTATION OF EARTH, HCS, AND CME SOURCE

WILCOX SOLAR OBSERVATORY

WILCOX SOLAR OBSERVATORY

Thursday, April 17, 14

WILCOX SOLAR OBSERVATORY

VARIATION WITH HCS DISTANCE

MATCH ICMES TO A CR AND DETERMINE HCS DISTANCE

BIN ICMES BY HCS
 DISTANCE AND DETERMINE
 MC% FOR EACH BIN

ERROR BARS - CHANGE IN MC% FOR ADDITIONAL ICME OR HCS DEVIATION FROM RMS VALUE

NO TREND FOR LARGE DISTANCES (>25°)

VARIATION WITH HCS DISTANCE

MATCH ICMES TO A CR AND DETERMINE HCS DISTANCE

BIN ICMES BY HCS
 DISTANCE AND DETERMINE
 MC% FOR EACH BIN

ERROR BARS - CHANGE IN MC% FOR ADDITIONAL ICME OR HCS DEVIATION FROM RMS VALUE

NO TREND FOR LARGE DISTANCES (>25°)

VARIATION WITH SOURCE LATITUDE

FIND SAME LACK OF TREND AS SEEN IN PREVIOUS WORKS

CORRELATIONS + P-VALUES

LOOK AT PEARSON CORRELATION COEFFICIENTS AND THE ASSOCIATED CONFIDENCE LEVELS

EXPECT SLOWER CMES TO DEFLECT MORE

SEE STRONGEST CORRELATIONS FOR SLOW CMES (<500 km/s) WITH SMALL HCS DISTANCES (<25°)</p>

REJECT NULL HYPOTHESIS AT 99% CONFIDENCE

FACTORS AFFECTING CORRELATION

© CME-CME INTERATIONS (LUGAZ & FARRUGIA 2014)

RECONNECTION WITHIN CME (FERMO+ 2014, IN REVIEW)

RECONNECTION WITH SOLAR WIND (RUFFENACH+ 2012, LAVRAUD+ 2014)

USED GLOBAL CR VALUES - DISTANCES MAY VARY SIGNIFICANTLY FOR INDIVIDUAL CASES

NOT ACCOUNTING FOR LONGITUDINAL EFFECTS

CONCLUSIONS

IF ALL CMES CONTAIN A FLUX ROPE AND CMES TEND TO DEFLECT TOWARD THE HCS THEN THE MC% SHOULD VARY WITH THE DISTANCE BETWEEN THE EARTH AND THE HCS

DEFLECTION ALONE CAN EXPLAIN THE GENERAL SOLAR CYCLE TREND IN THE PERCENTAGE OF MCS

THE MC% SHOWS MUCH STRONGER CORRELATION WITH THE HCS-EARTH DISTANCE THAN THE SOURCE-EARTH DISTANCE

SEE STRONGEST CORRELATION NEAR SOLAR MIN WHEN UNCERTAINTIES ARE ALSO SMALLEST

SOLAR CYCLES 23 AND 24

MC% VARIATIONS OBVIOUS DURING MIN OF SC23 BUT TREND NOT CLEAR ELSEWHERE

SIMILAR BEHAVIOR IN HCS LATITUDE BUT DO HAVE WEAKER MAGNETIC FIELD → WEAKER DEFLECTION FORCES

SOLAR CYCLE 23

SOLAR CYCLE 24

SOLAR CYCLES 23 AND 24

MC% VARIATIONS OBVIOUS DURING MIN OF SC23 BUT TREND NOT CLEAR ELSEWHERE

SIMILAR BEHAVIOR IN HCS LATITUDE BUT DO HAVE WEAKER MAGNETIC FIELD → WEAKER DEFLECTION FORCES

SOLAR CYCLE 23

SOLAR CYCLE 24

WILCOX SOLAR OBSERVATORY

WILCOX SOLAR OBSERVATORY

16

Thursday, April 17, 14