Smadar Naoz Einstein Fellow, Harvard Smithsonian Center for Astrophysics ITC

Naoz & Narayan 2013, PRL

Plasma Meeting October 2013

 Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002

47 16 **DECLINATION (J200**

M51 B~30µG

 Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002

The dynamo mechanism?

e.g., Parker 1955; Ruzmaikin et al 1988; Kulsrud 1999; Brandenburg and Subramanian 2005; Kulsrud and Zweibel 2008 M51 B~30µG

 Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002

47 16 **DECLINATION (J200**

M51 B~30µG

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012

M51 B~30µG

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989

Kim et al 1989

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

111

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

 $\gamma \rightarrow$

TTTK

TT

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2
 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

- Coherent magnetic fields in galaxies and clusters ~ 10⁻⁶ Gauss e.g., Widrow 2002
- ~ 10⁻⁶ Gauss even up to up to z~2 (~3Gyr after the Big Bang) e.g., Widrow 2002
- Star forming galaxies (Green Peas) with 30 µGauss Chakraborti et al 2012
- B between (~1.5Mpc) clusters
 ~ 0.3-0.6 µGauss e.g., Kim et al 1989
- IGM large scale B ~ 10⁻¹⁸ Gauss Neronov & Vovk 2010; Aleksic et al 2010; Dermer et al 2011

Magnetogenesis

Magnetogenesis

Top down

Magnetogenesis

Top down

Magnetogenesis

Top down

Magnetogenesis

Top down

Magnetogenesis

Top down

Magnetogenesis

Top down

t~0.4Myr

t~0.4Myr

Magnetic fields on linear over-densities

re-ionization re-ionization

Generate magnetic field from zero B

Generate magnetic field from zero B through vortex like motion:

Generate magnetic field from zero B through vortex like motion:

Generate magnetic field from zero B through vortex like motion:

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity?
Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? A: Biermann 1950: $\nabla n \times \nabla P \neq 0$

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? $\nabla n \times \nabla P \neq 0$ (No Plasma:)

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? $\nabla n \times \nabla P \neq 0$ (No Plasma:)

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? $\nabla n \times \nabla P \neq 0$ (No Plasma:)

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? $\nabla n \times \nabla P \neq 0$ (No Plasma:)

P/n

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity? $\nabla n \times \nabla P \neq 0$ (No Plasma:)

P/n (T/n)

Generate magnetic field from zero B through vortex like motion Q: How do we generate vorticity?

 $\nabla n \times \nabla P \neq 0$ (No Plasma:)

Where do we find vorticity in the dark ages?
Where is the plasma?

P/n (T/n) $\nabla n \times \nabla P \neq 0$

2. Where is the plasma?

P/n (T/n) $\nabla n \times \nabla P \neq 0$

2. Where is the plasma?

Linear T fluc. / gas density fluc.

P/n (T/n) $\nabla n \times \nabla P \neq 0$

Where do we find vorticity in the dark ages?
Where is the plasma?

COMPTON SCATTERING

COMPTON SCATTERING

+ THE STREAM VELOCITY

Tseliakhovich & Hirata 2010

+ THE STREAM VELOCITY

Tseliakhovich & Hirata 2010

- |v_b-v_{dm}|≈30 km/sec at Recombination time =Mach 5
- scales as 1/a

e.g.,effects on structure formation Greif et al 2011, Stacy et al 2011, Naoz et al 2012,2013, Visbal et al 2012

COMPTON SCATTERING

+ THE STREAM VELOCITY

Tseliakhovich & Hirata 2010

- |v_b-v_{dm}|≈30 km/sec at Recombination time =Mach 5
- scales as 1/a

0.8 1σ stream vel 0.6 z = 30^q9/^L 0.4 z=100 e.g., effects on structure formation 0.2 Greif et al 2011, Stacy et al 2011, Naoz et al 2012,2013, 10 10^{2} 103 10^{4} Visbal et al 2012 $k [Mpc^{-1}]$ Naoz & Narayan 2013, PRL

COMPTON SCATTERING

THE EFFECTS OF REIONIZATION

 $\dot{B} \sim \overline{T} \nabla \delta_{e} \times \nabla \delta_{T}$

- T→10⁴ K
- • $\delta_e \rightarrow$ Larger in 10-10²
- • δ_T → Larger in 10-10²

THE EFFECTS OF REIONIZATION

 $\dot{B} \sim \overline{T} \nabla \delta_{\rho} \times \nabla \delta_{\tau}$

- T→10⁴ K
- • $\delta_e \rightarrow$ Larger in 10-10²
- • δ_T → Larger in 10-10²

Pre-reionization $10^{-25} \cdot 10^{-24} \text{ G}$ B- 310^{-18} G present day

PRIMORDIAL MAGNETIC FIELDS

PRIMORDIAL MAGNETIC FIELDS

