Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

Lauren N. Woolsey

lwoolsey@cfa.harvard.edu Harvard-Smithsonian Center for Astrophysics Advisor: Steven R. Cranmer

October 28, 2013

(中) (종) (종) (종) (종) (종)

Motivation •0000000

Vodels and Results

Discussion 00000

Coronal heating problem

Evidence for the solar wind is intimately tied to the existence of a million degree corona.

イロト イポト イヨト イヨト

Left: Parker 1958, Fig. 1

Proposed mechanisms for coronal heating of two paradigms:

- Reconnection/Loop-Opening (RLO)
- Wave/Turbulence-Driven (WTD)

28 Oct. 2013 2 / 25

Models and Results

Discussion 00000

Reconnection/Loop-Opening (RLO) models

Fletcher, L., Metcalf, T. R., Alexander, D., Brown, D. S., and Ryder, L. A., "Evidence for the Flare Trigger Site and Three-Dimensional Reconnection in Multiwavelength Observations of a Solar Flare", ApJ 554, 451-463, 2001

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 3 / 25

Models and Results

Discussion 00000

Wave/Turbulence-Driven (WTD) models

Peter Cargill & Ineke De Moortel (2011) Nature 475

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 4 / 25

(日) (個) (E) (E) (E)

Heating and the turbulent cascade

Turbulent heating rate: $Q \approx \rho \frac{Z_{-}^2 Z_{+} + Z_{+}^2 Z_{-}}{4L_{\perp}}$

 L_{\perp} is effective turbulence correlation length, assume: $L_{\perp} \propto B^{-1/2}$

For Alfvén waves at low heights: $Z_{\pm} \propto \rho^{-1/4}$

In thin flux tube limit: $B\propto
ho^{1/2}$

Therefore, in thin flux tube limit we can show $\boxed{Q \propto B}$

L. N. Woolsey (Harvard-SAO)

Discussion 00000

Forecasting from empirical relations

From Wang & Sheeley (1990):

$$f_s = (R_\odot/R_{ss})^2 [B(R_\odot)/B(R_{ss})]$$

Ranges of expansion factor and characteristic wind speed

f _s	v_w (km s ⁻¹)
<3.5	700
3.5 - 9	600
9 - 18	500
18 - 54	400
>54	330

イロト イポト イヨト イヨト

▶ < ≧ ▶ ≧ ∽ へ ↔ 28 Oct. 2013 6 / 25

Forecasting from empirical relations

From Arge & Pizzo (2000), "applies strictly near the solar equator":

$$V(f_s) = 267.5 + \left(rac{410}{f_s^{2/5}}
ight) ~{
m km~s^{-1}}$$

From Arge et al. (2004), now with two coronal parameters:

$$V(f_s, \theta_b) = 265 + \frac{1.5}{(1+f_s)^{1/3}} \left(5.9 - 1.5 \exp[1 - (\theta_b/7^\circ)^{5/2}]\right)^{7/2} \text{ km s}^{-1}$$

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 7 / 25

イロト 不得下 イヨト イヨト 二日

イロト イポト イヨト イヨ

28 Oct. 2013 8 / 25 Vodels and Results

Discussion 00000

Improvements to space weather forecasting

Reliance on WSA-ENLIL modeling is problematic. Need to accurately predict effects on:

- GPS navigation
- Power grids
- Satellite communications
- Astronaut safety

イロト イポト イヨト イヨト

We take a step beyond the empirical expansion factor relation.

28 Oct. 2013 9 / 25

イロト 不得下 イヨト イヨト

Motivation 00000000

Models and Results

Discussion 00000

Input Magnetic Fields

The main grid of models used for the current analysis

28 Oct. 2013 12 / 25

Discussion 00000

Introducing ZEPHYR

Cranmer, van Ballegooijen, and Edgar (2007)

Written in Fortran 77

Physics includes:

- hydrodynamic conservation equations
- radiative heating and cooling
- heat conduction
- Alfvén and acoustic waves

Solves for self-consistent, 1D, steady-state solution for bulk properties of the solar wind $(T(r), \rho(r), u(r))$ from an open flux tube with footpoint in the solar photosphere

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 13 / 25

Viotivation	Models and Results	Discussion	Ρ.
0000000	000000000	00000	

Does the Wang & Sheeley (1990) anti-correlation hold?

Temperature correlations, part 1: wind speed

Left: Red line is prediction from Parker isothermal corona model Right: Green line is empirical relation for T_p (Elliott et al. 2012) Plots by L. Woolsey

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Temperature correlations, part 2: magnetic field

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 16 / 25

Models and Results

Discussion 00000

Introducing TEMPEST

Woolsey and Cranmer (in prep)

Written in Python

Physics includes:

- momentum conservation equation (modified Parker equation)
- Alfvén wave action conservation
- temperature profiles based on ZEPHYR turbulent heating results

Solves for self-consistent, 1D, steady-state solution for outflow speed of the solar wind from an open flux tube with footpoint in the solar photosphere

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 17 / 25

イロト 不得下 イヨト イヨト 二日

The Efficient Modified Parker Equation Solving Tool

The modified Parker equation we use has the form:

$$\left(u - \frac{u_c^2}{u}\right)\frac{du}{dr} = -\frac{GM_{\odot}}{r^2} - u_c^2\frac{d\ln B}{dr} - a^2\frac{d\ln T}{dr}$$

where the full form of the critical speed is given by:

$$u_c = \sqrt{a^2 + \frac{U_A}{4\rho} \left(\frac{1+3M_A}{1+M_A}\right)}$$

and the Alfvén wave energy density is defined as:

$$U_A(r) \equiv
ho v_\perp^2 = rac{S(r)B(r)V_A(r)}{(u(r)+V_A(r))^2}$$

See Jacques (1977), Isenberg & Hollweg (1982), Cranmer et al. (2007)

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 18 / 25

Models and Results

Discussion 00000

Solution Algorithm

$$\left(u - \frac{u_c^2}{u}\right)\frac{du}{dr} = -\frac{GM_{\odot}}{r^2} - u_c^2\frac{d\ln B}{dr} - a^2\frac{d\ln T}{dr}$$

- 1. Initally, set $u_c = a = \sqrt{kT/m}$
- 2. Find roots of RHS of modifed Parker equation
- 3. Use root corresponding to true critical point
- 4. Use L'Hôpital's rule to find slope at critical point
- 5. Integrate outwards using Runge-Kutta method to get outflow
- 6. With initial solution, add waves i.e. full expression for u_c
- 7. Follow steps 2-5, converging toward the stable solution

Results with current version of TEMPEST

Miranda: no wave pressure

Prospero: waves with damping

Different ranges along y-axes! Miranda does not have wave pressure term: consistently underpredicts wind speed; Prospero has waves that in some cases are underdamped: can overpredict wind speed.

Plots by L. Woolsey

L. N. Woolsey (Harvard-SAO)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Models and Results

Discussion •0000

Wind speed comparison - temperature profiles

Plot: L. Woolsey

L. N. Woolsey (Harvard-SAO)

■ > < ■ > < ■ > < <
 28 Oct. 2013
 21 / 25

Models and Results

Discussion 00000

Wind speed comparison - temperature profiles

Plot: L. Woolsey

L. N. Woolsey (Harvard-SAO)

ま▶ ◀ ≣ ▶ ≣ ∽ ९... 28 Oct. 2013 22 / 25

Most important results in this project

From ZEPHYR:

- Recovery of Wang-Sheeley 1990 expansion factor relation
- Temperature-Magnetic Field relations with $\mathcal{R} > 0.8$

From TEMPEST:

- ► A less computationally-intensive outflow prediction code
- Incredibly fast education tool using Miranda only
- Wind speed predictions requiring only B(r) from user

28 Oct. 2013 23 / 25

Models and Results

Discussion 00000

The next steps

- 1. Investigate which assumptions introduce the most "error"
 - Reflection coefficient throughout solar atmosphere*
 - ► Shape of temperature profile (T_{TR}, z_{TR}, T_{max}, z_{max})
 - One-fluid treatment (in both codes)
- 2. Test using magnetogram data and in situ measurements

*no longer a constant

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 24 / 25

イロト 不得下 イヨト イヨト 二日

Models and Results

Discussion 0000

Conclusions

TEMPEST will become a flexible, publicly available solar wind tool for forecasting the dangerous high-speed wind streams that can cause geomagnetic storms.

ZEPHYR continues to provide accurate predictions as well as the necessary information to properly calibrate TEMPEST without requiring a slew of free parameters as inputs to either code.

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 25 / 25

Models and Results

Discussion 00000

TEMPEST and Wang-Sheeley anti-correlation

Plot: L. Woolsey

L. N. Woolsey (Harvard-SAO)

■ ト 4 ■ ト ■ - クへペ 28 Oct. 2013 26 / 25

Models and Results

Discussion 00000

Parker Equation (Parker 1958)

$$Nu\frac{du}{dr} = -\frac{d}{dr}(2NkT/m) - \frac{GNM_{\odot}}{r^{2}}$$
$$\frac{d}{dr}(r^{2}Nu) = 0$$

・ロト ・聞ト ・ヨト ・ヨト

$$\left(u - \frac{u_c^2}{u}\right)\frac{du}{dr} = -\frac{GM_{\odot}}{r^2} - u_c^2\frac{d\ln B}{dr} - a^2\frac{d\ln T}{dr}$$

L. N. Woolsey (Harvard-SAO)

SWPC predictions with WSA | WSA-ENLIL and Messenger

イロト イポト イヨト イヨ

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 28 / 25

Discussion 00000

The curious case of pseudostreamers

Bottom set of figures: solid line is expansion factor variation, dotted line is source surface field strength

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 29 / 25

• • • • • • • • • • • • •

Image: A math a math

Wind speed comparison - reflection coefficients

Plot: L. Woolsey

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 31 / 25

Vodels and Results

Discussion 00000

L. N. Woolsey (Harvard-SAO)

28 Oct. 2013 32 / 25