Energy and momentum transfer from waves to particles

E J Lund, J R Jasperse, B Basu, N J Grossbard

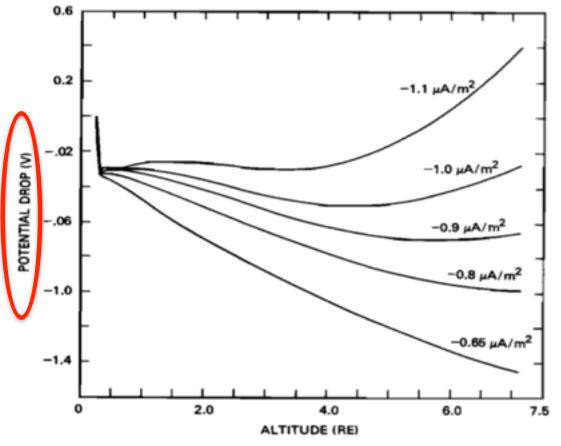
Outline

- Motivation
- Multimoment fluid theory
- Wave-particle interaction terms
- Application to auroral ion heating
- Future work and concluding remarks

Motivation

- Perpendicular ion heating is a common feature in astrophysical plasmas
- Many types of waves can produce some heating
- However, what waves actually produce the observed heating is a key question
- Needed: a self-consistent model to answer this question

Anomalous resistivity is not enough!



Ganguli and Palmadesso (1987), JGR 92, 9673

Outline

- Motivation
- Multimoment fluid theory
- Wave-particle interaction terms
- Application to auroral ion heating
- Future work and concluding remarks

Approximations

- Guiding center
- Gyrotropic particles
- Fluid description (take moments)
- E/B > c (often true in auroral region)

On the quasisteady state

- No true steady state solution of these equations exists in the downward current region
- However, there is an average "state" about which the instantaneous state fluctuates
- Electron time scales << ion time scales ⇒ can compute quasisteady
 state as average over electron time

$$\begin{aligned} & \text{Multi-moment fluid equations} \\ & \frac{\partial n_{\alpha}}{\partial t} + B \frac{\partial}{\partial s} (n_{\alpha} u_{\alpha}/B) = 0 \\ & \frac{\partial}{\partial t} (m_{\alpha} n_{\alpha} u_{\alpha}) + \frac{\partial}{\partial s} [n_{\alpha} (T_{\alpha \parallel} + m_{\alpha} u_{\alpha}^{2})] - \frac{1}{B} \frac{dB}{ds} n_{\alpha} (T_{\alpha \parallel} + m_{\alpha} u_{\alpha}^{2} - T_{\alpha \perp}) + q_{\alpha} n_{\alpha} \frac{\partial \phi}{\partial s} = \dot{M}_{\alpha \parallel} \\ & \frac{1}{2} \frac{\partial}{\partial t} [n_{\alpha} (T_{\alpha \parallel} + m_{\alpha} u_{\alpha}^{2})] + \frac{\partial}{\partial s} (n_{\alpha} q_{\alpha \parallel}) - \frac{1}{B} \frac{dB}{ds} n_{\alpha} (q_{\alpha \parallel} - q_{\alpha \perp}) + q_{\alpha} n_{\alpha} u_{\alpha} \frac{\partial \phi}{\partial s} = \dot{W}_{\alpha \parallel} \\ & \frac{\partial}{\partial t} (n_{\alpha} T_{\alpha \perp}) + B^{2} \frac{\partial}{\partial s} (n_{\alpha} q_{\alpha \perp}/B^{2}) = \dot{W}_{\alpha \perp} \\ & \frac{\partial^{2} \phi}{\partial s^{2}} + 4\pi \sum_{\alpha} q_{\alpha} n_{\alpha} = 0 \end{aligned}$$

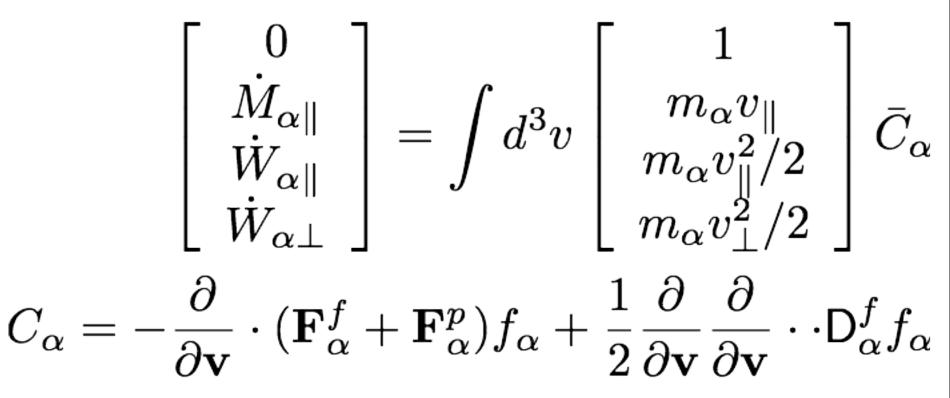
 Right-hand side represents wave-particle interactions (anomalous resistivity and anomalous heating/cooling)

Outline

- Motivation
- Multimoment fluid theory
- Wave-particle interaction terms
- Application to auroral ion heating
- Future work and concluding remarks

Formal derivation

 Wave-particle interactions are treated via a Fokker-Planck formalism



Wave-particle interaction terms

$$\begin{split} \dot{M}_{\alpha\parallel} &= \frac{\pi q_{\alpha}^2}{m_{\alpha}} \int d^3 v f_{\alpha} \sum_n \int \frac{d^3 k}{(2\pi)^3} \int_{-\infty}^{\infty} d\omega \left\{ \frac{k_{\perp}^2}{2k^2} \frac{k_{\parallel}}{\Omega_{\alpha}} [J_{n-1}^2(\xi_{\alpha}) - J_{n+1}^2(\xi_{\alpha})] \langle |\delta \tilde{E}^2|(\mathbf{k},\omega)\rangle + \frac{k_{\parallel}^2}{k^2} k_{\parallel} J_n^2(\xi_{\alpha}) \left(\frac{\partial}{\partial \omega} \langle |\delta \tilde{E}^2|(\mathbf{k},\omega)\rangle \right) + 4m_{\alpha} \frac{k_{\parallel}}{k^2} J_n^2(\xi_{\alpha}) \mathrm{Im} \, \tilde{\epsilon}(\mathbf{k},\omega)^{-1} \right\} \times \\ &\delta(n\Omega_{\alpha} + k_{\parallel}v_{\parallel} - \omega) \end{split}$$

- Similar expressions can be obtained for $\dot{W}_{lpha\parallel}$ and $\dot{W}_{lpha\perp}$

Characteristic **k** method

$$I(s,t)_{m}^{(1)} = (2\pi)^{-2} \int_{0}^{\infty} dk_{\perp} k_{\perp} \int_{0}^{\infty} dk_{\parallel} \int_{0}^{\infty} d\omega h(s,t;\mathbf{k},\omega)$$

$$\times \langle |\delta \tilde{E}^{2}|(s,t;\mathbf{k},\omega)\rangle_{m}$$

$$= \delta \tilde{E}^{2}(s,t)(2\pi)^{-2} \int_{0}^{\infty} dk_{\perp} k_{\perp} \int_{0}^{\infty} dk_{\parallel}$$

$$\times \int_{0}^{\infty} d\omega h(s,t;\mathbf{k},\omega)g(s;\mathbf{k})_{m}^{(1)}R(s;\mathbf{k},\omega)_{m}^{(1)}$$

- *h* and *R* vary slowly with **k**
- g is sharply peaked about a characteristic $\mathbf{k}_{0m}^{(1)}$
- Can approximate above integral for quadrant
 (1) and resonance *m* as

$$I(s,t)_m^{(1)} \approx \delta \tilde{E}^2(s,t)_m^{(1)} \int_0^\infty d\omega \, h(s,t;\mathbf{k}_{0m}^{(1)},\omega) R(s;\mathbf{k}_{0m}^{(1)},\omega)_m^{(1)}$$

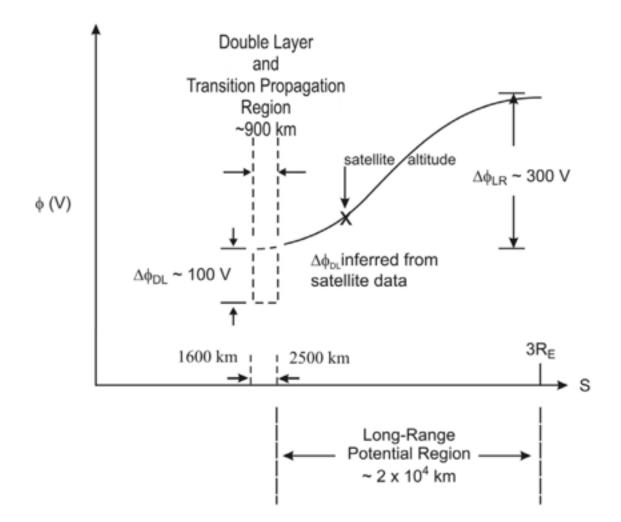
Outline

- Motivation
- Multimoment fluid theory
- Wave-particle interaction terms
- Application to auroral ion heating
- Future work and concluding remarks

Auroral basics

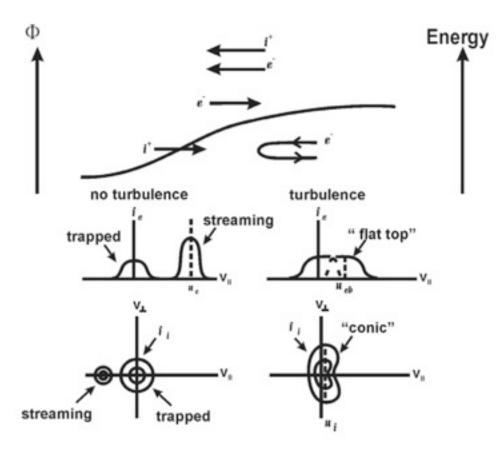
- Electrons carry field-aligned currents upward and downward
- Charge carrier number flux limited, so electric field needed
 - Double layers (short-range E_{||}) form at interface with ionosphere
 - Different anisotropy of electrons, ions leads to charge separation \Rightarrow long-range E_{II}

Picture of field-aligned potential difference (downward J_{\parallel})

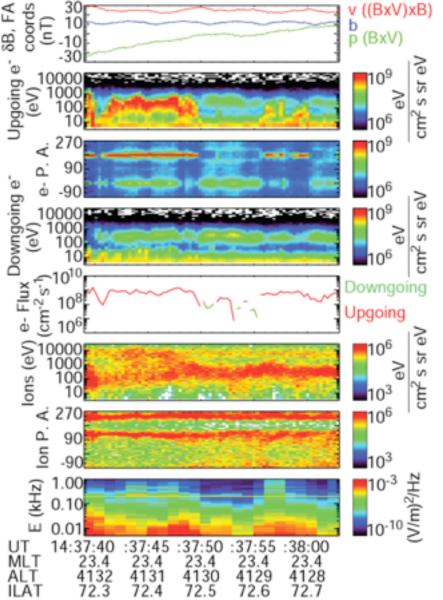


Typical particle distributions

Long-Range Potential Region

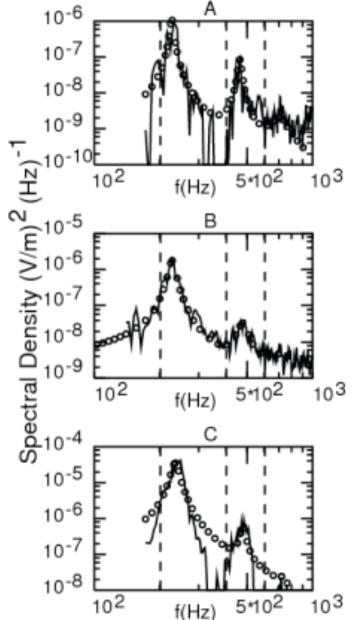


Example FAST data



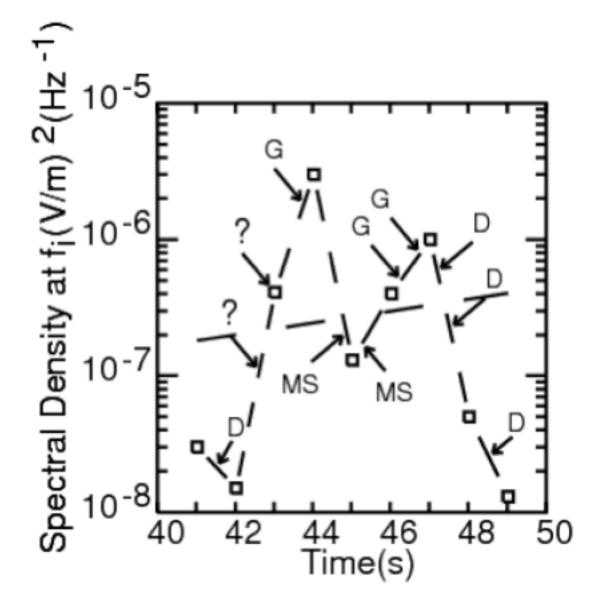
- Portion of a nightside pass
- Predominantly downward current (upward field-aligned electrons)
- Ion conic present throughout
- EIC and BBELF waves present

EIC wave spectra



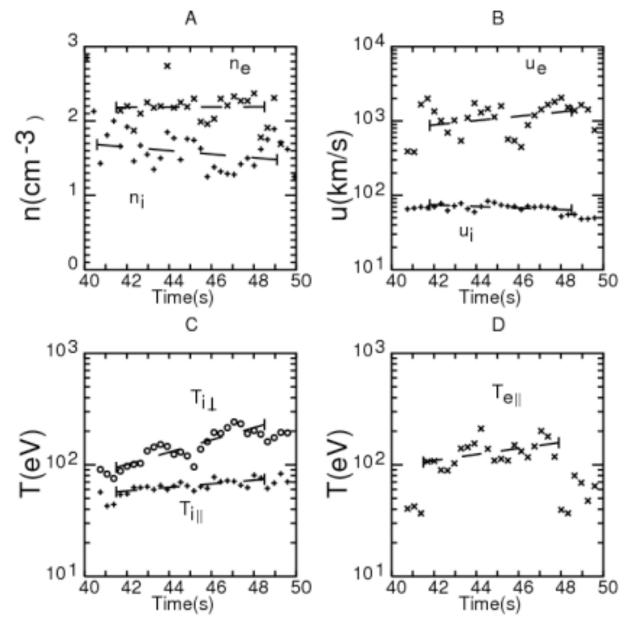
- Three emission levels (low, medium, high) depicted
- Fundamental, 2nd harmonic, and sometimes 3rd harmonic visible
- Fits shown to Lorentz resonance functions

Wave growth and damping

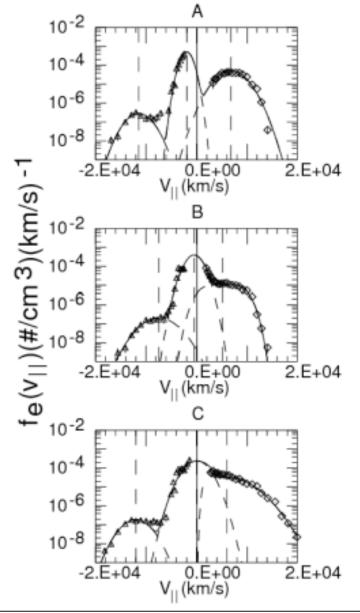


- PSD measured at 201 Hz (*f*_cн)
- Electron distributions suggest:
 - G—growth
 - MS
 - metastable
 - D—damping

Electron and ion moments

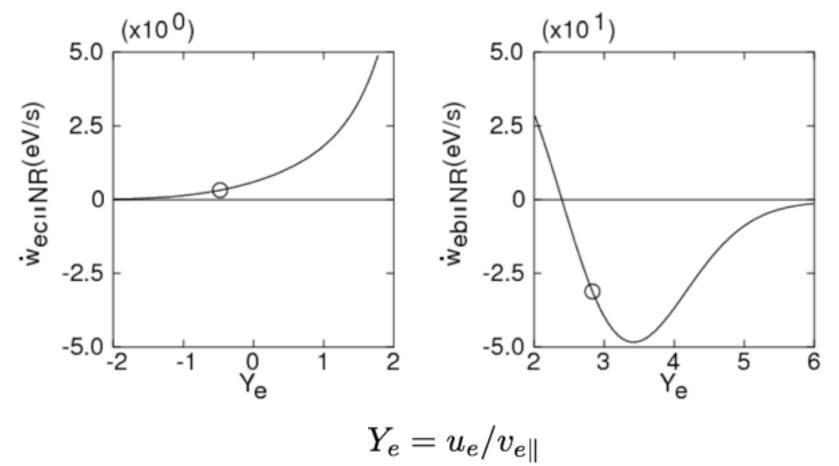


Sample electron distributions

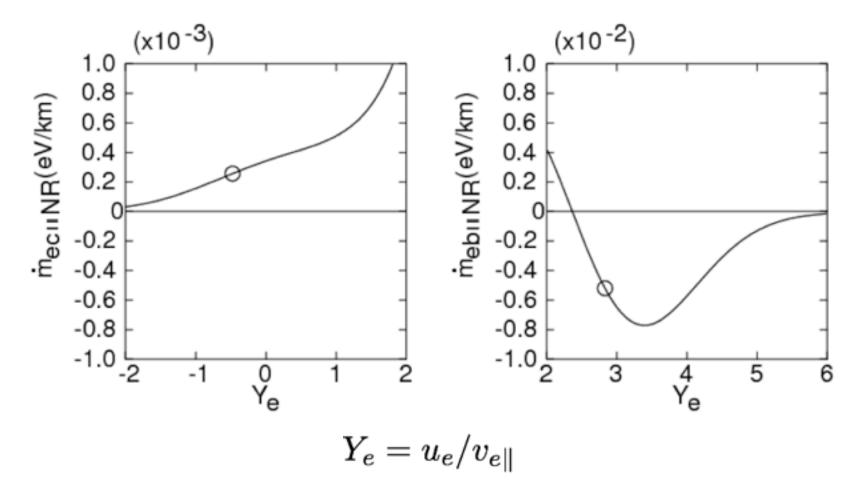


- Three populations in fit
 - Core
 - Upgoing
 - Downgoing
- Potentially unstable, marginally stable, and stable distributions seen
- Instability is bump-ontail-driven, not currentdriven

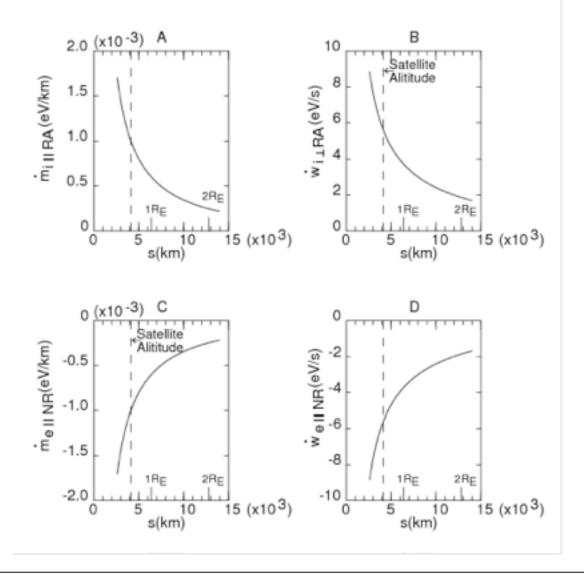
Core and beam energy transfer rates per particle (marginally stable case)



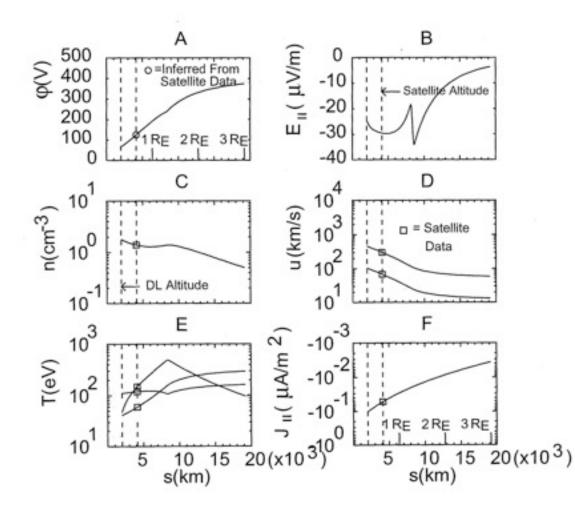
Core and beam momentum transfer rates per particle (marginally stable case)



Total anomalous transfer rates per particle (marginally stable case)

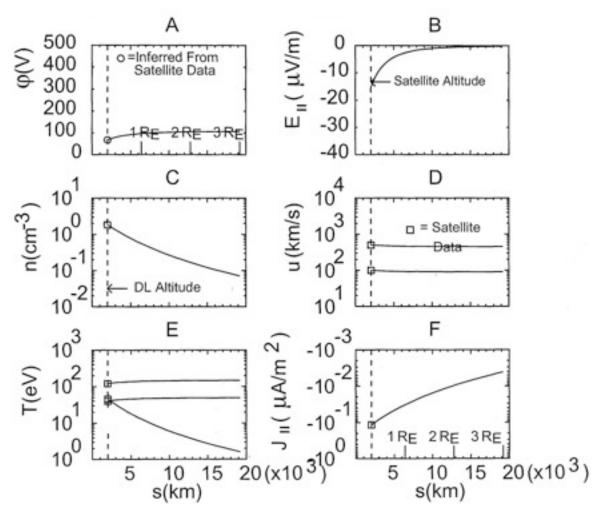


Ion heating with EIC turbulence



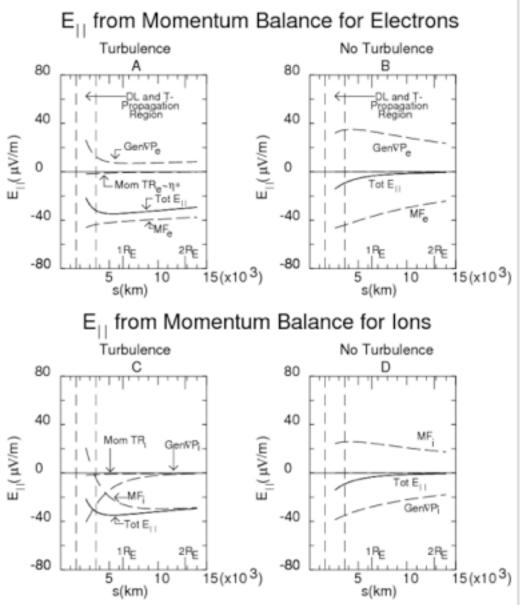
- Modified Drummond-Rosenbluth instability
- Turns off when J_{||} drops below threshold
- Sufficient to account for observed heating

Without EIC turbulence



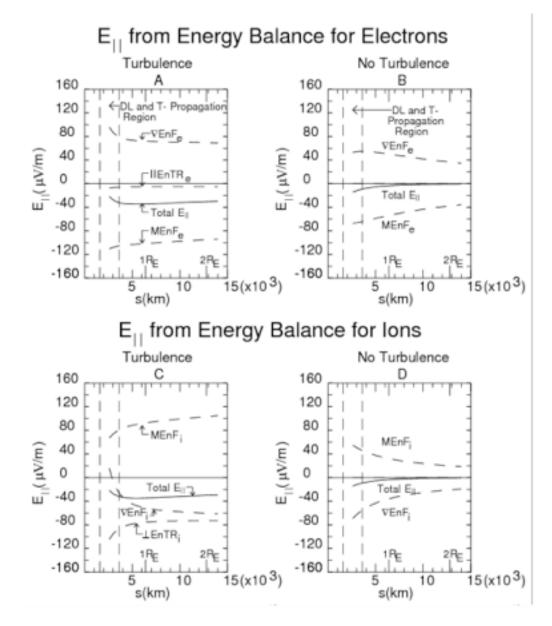
- No heating occurs
- T_{i⊥} cools
 adiabatically
- Inconsistent with observations

E_I from momentum balance



- Anomalous resistivity only a minor contributor $(E \neq \mathbf{\eta}^* J)$
- Turbulence changes contributions of ∇p, mirror force terms

E_{II} from energy balance



- Energy transfer to ions a significant contributor
- Gradient and mirror terms dominate for electrons

Outline

- Motivation
- Multimoment fluid theory
- Wave-particle interaction terms
- Application to auroral ion heating
- Future work and concluding remarks

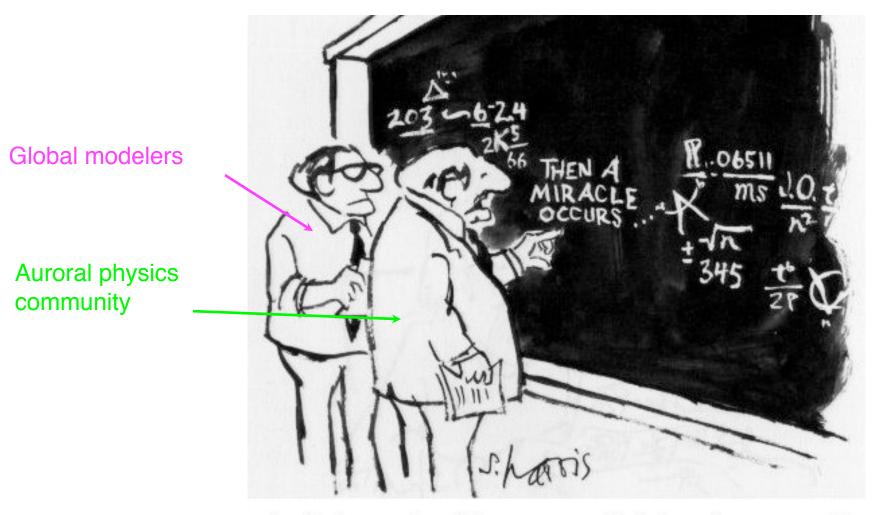
Future Work

- Extend to other wave modes (ESWs, electromagnetic modes, etc.)
- Extend to upward current region
- Time dependence

Summary

- Self-consistent fluid theory for perpendicular ion heating in auroral (and other astrophysical) plasma
- Theory includes effects of wave turbulence
- Predicted ion heating rate consistent with observations if turbulence is included
- E_{||} supported by anomalous heating, not anomalous resistivity

Cutting room floor



"I think you should be more explicit here in step two."

from What's so Funny about Science? by Sidney Harris (1977)

Self-consistent solutions

