INNER SOURCE C^+/O^+ PICKUP IONS PRODUCED BY SOLAR WIND RECYCLING, NEUTRALIZATION, BACKSCATTERING, SPUTTERING, AND SPUTTERING-INDUCED RECYCLING

P. R. Quinn, N. A. Schwadron, E. Möbius, A. Taut, L. Berger

MECHANISMS

2

- C = 2.39
 O = 3.98
 Na = 0.056
 - Mg = 1.015
- Al = 0.070
- S = 0.417
- Ca = 0.047
- Cr = 0.016
- Fe = 0.705
- Ni = 0.024

- Average chondritic IDP composition relative to Si.
- Consider fluffy IDPs with equivalent density of 0.001 g/cm³.
- Use SRIM to simulate solar wind ions through grains of varying size to determine the percent of ions transmitted, implanted, backscattered, and the sputtering yield.

- Grains spiral toward the sun due to the Poynting-Robertson effect.
- Larger grains break apart into smaller grains due to dust-dust collisions.

• $\Gamma(r,s) = n(r,s)\pi s^2$.

FRACTION OF PUIS PRODUCED - RADIAL DEPENDENCE

- Integrate over all grain sizes to get the total percent of PUIs produced for each mechanism.
 - $k_{\mathrm{N,R,B}}(r,u) = \int k_{\mathrm{N,R,B}}(r,s,u)n(r,s)\pi s^2 ds$
- · Similarly for the sputtering yield.
 - $Y(r, u) = \int Y(r, s, u)n(r, s)\pi s^2 ds$

- Average radial velocity of PUIs weighted by $k_{N,B}(r, u, s)$ or Y(r, u) at each grain size.
- Shaded area is 1σ about the average radial velocity (very small for sputtering and backscattering).
- The velocity of recycled ions is that of the grain.

SOLAR WIND SPEED DEPENDENCE

- Repeat entire process for solar wind speeds from 325 km/s to 525 km/s.
- Now we have the following as a function of distance from the sun and solar wind speed:
 - Fraction of PUIs transmitted (neutralization), implanted (recycling and sputtering-induced recycling), and backscattering, $k_{N,R,B}(r, u)$
 - Sputtering yield, Y(r, u).
 - Average radial velocity of ions after production, $v_{N,R,B,S}(r, u)$.

 Fraction of PUIs produced by recycling, sputtering, and sputtering-induced recycling, κ_{R,S,SIR}(r, u)

- Saturation
 - Saturation occurs when a one-to-one correlation between implanted solar wind ions and dust grain atoms is reached.
 - Solar wind flux close to the sun is high enough to saturate grains during their Poynting-Robertson lifetime.
- Dissociation
 - Implanted C and O form compounds with implanted H.
 - Assume that C is desorbed as CH and O is desorbed as OH.
 - · CH \rightarrow C+H or CH \rightarrow CH⁺+e⁻.
- Sputtering-Induced Recycling
 - Once ions are implanted, they have a chance of being sputtered.
 - Within the saturation zone, there's 50% of sputtering a grain atom or implanted ion.

PRODUCTION RATE PER UNIT VOLUME

 $\cdot S_{\rm R}^{+}(r,u) = \kappa_{\rm R}(r,u)k_{\rm R}(r,u)S_{\rm impact}(r)P^{+}(r) \left[\left(\frac{\beta_{\rm diss}}{\beta_{\rm diss}^{+}\beta_{\rm ion}} \right) \left(\frac{\beta_{\rm ion}^{0}}{\beta_{\rm ion}^{0}+\beta_{\rm ion}^{+}} \right) + \left(\frac{\beta_{\rm ion}}{\beta_{\rm diss}^{+}\beta_{\rm ion}} P_{\rm diss}(r) \right) \right]$ $\cdot S_{\rm N}^{+}(r,u) = k_{\rm N}(r,u)S_{\rm impact}(r) \left[\eta^{+}P^{+}(r) + \eta^{0}P^{0}(r) \right]$ $\cdot S_{\rm B}^{+}(r,u) = k_{\rm B}(r,u)S_{\rm impact}(r) \left[\eta^{+}P^{+}(r) + \eta^{0}P^{0}(r) \right]$ $\cdot S_{\rm S}^{+}(r,u) = \kappa_{\rm S}(r,u)Y(r,u)S_{\rm impact}P^{+}(r)$ $\cdot S_{\rm SIR}^{+}(r,u) = \kappa_{\rm SIR}(r,u)Y(r,u)S_{\rm impact}P^{+}(r) \left[\left(\frac{\beta_{\rm diss}}{\beta_{\rm diss}^{+}\beta_{\rm ion}} \right) \left(\frac{\beta_{\rm ion}^{0}}{\beta_{\rm ion}^{0}+\beta_{\rm ion}^{+}} \right) + \left(\frac{\beta_{\rm ion}}{\beta_{\rm diss}^{+}\beta_{\rm ion}} P_{\rm diss}(r) \right) \right]$

•
$$S_{\mathrm{I}}^{+}(r,\theta) = \beta_{\mathrm{ion}}^{0} \left(\frac{r_{\mathrm{I}}}{r}\right)^{2} n_{\mathrm{O}}(r,\theta) P^{+}(r)$$

VDF COMPARISON TO CTOF

- Compare EPREM to SOHO/CTOF at 1 AU.
- Method from Taut et al. 2015 is used to derive normalized count rates of C⁺ and O⁺ as a function of w = v/u.
- New constraint broad VDF at 1 AU with possible cutoff near w = 2. Implies PUIs near 1 AU are produced with near zero speed.

- Recycling C+/O+ > 1 due to dissociation rate of CH being much higher than OH.
- Sputtering-Induced Recycling C⁺/O⁺ > 1 for slow solar wind speeds but is just below 1 for higher speeds.
- Total C⁺/O⁺ > 1 for slow solar wind speeds and now decreases with speed.

					Spattering
Constraint	Recycling	Neutralization	Backscattering	Sputtering	Induced Recycling
Broad VDF at 1 AU	No	Possibly	Yes	Yes	Yes
with cutoff near $w = 2$					
$C^{+}/O^{+} > 1$	Yes	Yes	Yes	No	Mostly
Decreasing C ⁺ /O ⁺ with u	No	Yes	Yes	Yes	Yes
Solar wind-like composition	Yes	Yes	Yes	No	Yes
Stability over the solar cycle	Yes	Unlikely	Yes	Yes	Yes

Souttoring-

- Backscattering and SIR satisfy the most constraints, but the total C⁺/O⁺ ratio does not match CTOF due to the over-production of O⁺.
- Possibility that silicate IDPs break down. For example $MgSiO_3 \rightarrow MgO + SiO_2$ where MgO has higher survivability near the sun.
- We test the production of sputtering from MgO IDPs. Results show a 30-40% decrease in O⁺ production making the total C⁺/O⁺ ratio about 1.37-0.95 for 325-525 km/s solar wind speed. These results move toward better agreement with CTOF.
- This suggests that the IDP composition may indeed change inside 1 AU.

- Determined a new constraint on the inner source PUI production mechanism: a broad VDF at 1 AU with possible cutoff near w = 2 which implies PUIs near 1 AU are injected into the solar wind at near zero speeds.
- Introduced two new mechanisms for inner source PUI production: backscattering and sputtering-induced recycling.
- · Backscattering and sputtering-induced recycling satisfy the most constraints.
- The dominant mechanisms (based on intensity) are sputtering and sputtering-induced recycling.
- The composition of our simulated PUIs does not perfectly agree with CTOF observations most likely due to the high production of sputtered O⁺. We showed that a change in IDP composition may reduce the amount of sputtered O⁺ and agrees better with CTOF.
 Observational evidence of PUI composition and dust grain composition inside 1 AU is necessary to investigate this idea further.