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Service announcement #1: 
“Coronal” CMEs in SC24

❂SC24 is characterized by low activity, in terms of SEPs, geomagnetic storms, etc.
❂SC24 is also characterized by low solar activity. The reports about high CME rates from the 

Sun ARE WRONG. Beware when using past correlations. Do not use the LASCO catalog. 
❂See work by Wang & Colaninno, 2014 - Hess & Colaninno, 2017
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Service announcement #2: 
SC25?

❂SIDC maintains an analysis of sunspot-less days in the current SC24->SC25 transition.
❂So far, it seems to indicate the solar minimum may be reach in < 1 year, i.e. a much faster 

transition than during the last cycle. 
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❂“In situ […] spacecraft observations reveal an isolated third ring [that] persisted largely unchanged […] 
for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary 
shock wave passage.” D. Baker et al., Science, 2013

❂What was really behind this “strong” shock?

A way to create strong storms in 
a weak cycle

Hudson et al., GRL, 2014

Baker et al., 
Science, 2013

- 2 interacting CMEs
(Liu et al., 2014;  Lugaz et al., 2015)
- Second CME 48 hours after first    
CME.
- Shock inside previous magnetic eje
cta.

Lugaz et al., GRL, 2015
Liu et al., ApJL, 2014
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What is special about this event?
Lugaz et al., GRL, 2015

❂Geo-effects: Due to shock propagating inside BZ south. 
Results in:
❖the main phase of an intense geomagnetic storm.
❖Combination of Bz south and high dynamic pressure results in the 

magnetopause to reach ~ 6.5 Re (blue curve w/o erosion).
❂IP Causes: 
❖First shock: CME speed of 315 km/s!! 
❖Second shock: CME speed of 370 km/s (leading edge of 410 

km/s)
❖How come? Before shock 1: Vsw~ 270 km/s, Vms ~ 40 km/s              

315 km/s CME can drive shock!
❖Before shock 2: Vsw~ 320 km/s, Vms ~ 60 km/s                         

With 40 km/s radial expansion,  
370 km/s CME can drive shock!

Questions: 
1- How common are shocks inside CMEs? (see Lugaz et al.. JGR, 2015)
2- What type of shocks are by themselves geo-effective? (see Lugaz et al., 2016)
3- How common are shocks driven by very slow CMEs? (next)
4- Are these mostly occurring during the weak SC24? (next)
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Geo-effectiveness of shocks 
and shocks inside CMEs

❂ Common? Over SC23, ~15-20% of the shocks at 1 AU propagate inside a CME (Lugaz et al., 2015).
❂ Not all shocks are equal. But, beware ! Their “properties” (Mach, compression ratio, angle) depend on 

the upstream conditions. So does their geomagnetic consequences.
❂Causes? 94 shocks (67 in SC23, 27 in SC24) had a sheath causing a moderate geomagnetic storm.
❖ 45 shocks propagated into “nominal” solar wind conditions (“normal” shocks). 
❖ 49 shocks propagating into a preceding transient (see also, Lugaz et al., JGR, 2015).

❂ Shocks inside transients are statistically more geo-effective.
❂~50% of shocks in CMEs have geo-effective sheaths vs. ~12% of “normal” shocks.

Lugaz et al., JGR, 2016

Lugaz et al., JGR, 2015
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Upstream conditions enabling 
slow CMEs to drive shocks

❂ Straight-forward: slower CMEs are less likely to drive shocks.
❂Questions: 1- is there a threshold? (ex: CME with speed below 400 km/s don’t drive shocks)                 

2- Is there a solar dependency of this threshold?
❂ Threshold: CME needs to be faster than the fast magnetosonic speed in the solar wind frame (actually 

not exactly true, depends on the shock angle). 
❂On average, this speed is 502 km/s in SC23 and 470 km/s in SC24 (statistically significant).                   

New question: Is it affected by the extreme solar minimum in 2006-2009?

❂ Removing time periods w/ SSN < 50, 
difference is still here. 

Lugaz et al., ApJ, 2017
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Solar cycle change in proportion of 
slow CMEs that drive shocks

❂The number of days with very (and extremely) low threshold speed for a CME to 
drive a shock is significantly larger in SC24 than in SC23.

❂So, do we see more slow CMEs with shocks in SC24 than SC23?
❂NO

❂And, ¼ of very slow CMEs (average speed < 370 km/s) drive shocks!
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CME Expansion
❂This study is done with the average CME speed. Front speed is what matters!
❂Gopalswamy et al. (2015) found that MCs at 1 AU in SC24 have lower expansion speed 

than MCs during SC23.
❂L. Jian et al. (2018) found small decrease in Vexp but larger in Vmax for ICMEs.
❂Exact radial dependence(s) of CME expansion, fast magnetosonic speed, solar wind speed 

and CME “center” speed is not known. 
Poedts et al., AIP, 2016

Gopalswamy et al., JGR, 2015

❂Study: 22 Slowest shock-driving CMEs in SC23/24
“Mach” number of the CME center, front and maximum speeds
Assuming quasi-perpendicular shock 



NESSC– May 4, 2018Lugaz et al.– Shocks and CMEs

Shock-Driving Slow CMEs (1)
Mcme < 1 < Mfront

❂ Shock speed at 1 AU: 415 km/s; 
CME front 390 km/s
❖ Upstream: 330 km/s
❖ Fast ms speed: 55 km/s
❖ The CME is convected with the 

solar wind, expansion seems to 
create the shock.

❂ξ ~ 1.25 (large expansion)
❂No clear halo
❂Shock is due to combination of 

slow solar wind speed, low 
magnetosonic speed and CME 
expansion.

❂5/22 cases like this.

Lugaz et al., ApJ, 2017
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Shock-Driving Slow CMEs (2)
Mcme < Mfront < 1

❂ Shock speed at 1 AU: 380 km/s; 
CME front 395 km/s
❖ Upstream: 360 km/s
❖ Fast ms speed: 45 km/s
❖ The CME is convected with the 

solar wind (Mcme ~ 0), expansion 
seems to create the shock.

❂θBn ~ 50° explains shock
❂ξ ~ 0.9 (typical).
❂Shock is due to combination 

of low magnetosonic speed 
and CME expansion.

❂6/22 cases like this.
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Shock-Driving Slow CMEs (3)
1 < Mcme < Mfront

❂ Shock speed at 1 AU: 390 
km/s; CME front 385 km/s
❖ Upstream: 290 km/s
❖ Fast ms speed: 45 km/s
❖ The CME is barely super-fast 

(Mcme ~ 1.3) if we don’t consider 
expansion.

❂Halo CME on 10/27 at 14:20
❖ 95 hour Sun-Earth propagation 

for the shock.
❖ Average transit speed of  430 

km/s.
❖ Initial speed of ~420-460 km/s

❂ 6/22 cases like this.
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Slow CME Without Shock

❂ Slow CME (365 km/s), slow upstream speed, slow 
magnetosonic speed
❖ Upstream: 320 km/s
❖ Fast ms speed: 45 km/s
❖ Dense sheath preceded by a wave-like feature.
❖ CME expansion is very small (ξ ~ 0.3).

❂Out of 22 slowest CMEs with shocks, 5 are cases with a 
complex situation (for example first CME of September 
30, 2012) with no simple expansion profile.
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Conclusions

❂Shocks propagating inside CMEs are a common occurrence at 1 AU.
❖It represents about 15% of the shocks and occurs in about 15% of the CMEs at 1 AU,
❖About half geo-effective shocks/sheaths are due to shocks inside CMEs.
❖Shocks inside CMEs are a great way to make a weak CME geo-effective. 
❖Not all shocks are equal. Beware of the upstream conditions.

❂Very slow CMEs (V < 350 km/s) sometimes drive shocks.
❖It takes a combination of slow upstream and slow Alfvén speeds, and often high expansion.
❖SC24 has a statistically significant lower threshold for a CME to drive a shock. 
❖But slow CMEs drive shocks in the same proportion in SC23 and SC24 (~30% of CMEs below 400 km/s drive a 

shock). This is based on the CME central speed. 
❖Difference in CME expansion can explain why this did not change.

❂ Looked in details at the 22 slowest CMEs with shocks in the past 20 years: for half expansion 
speed is critical in the ability of the CME to drive a shock.

❂CME radial expansion can drive shock in the ecliptic.
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Thank you!
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