The plasmoid instability during asymmetric inflow magnetic reconnection

Nick Murphy,¹ Aleida Young,^{1,2} Chengcai Shen,^{1,3} Jun Lin^{1,3}, and Lei Ni³

¹Harvard-Smithsonian Center for Astrophysics ²University of Michigan ³Yunnan Astronomical Observatory

> NESSC Meeting Boston University February 11, 2013

Motivation

- In recent years, it has been discovered that high aspect ratio current sheets are susceptible to the formation of plasmoids (Loureiro et al. 2007; Huang et al. 2010)
 - Breaks up the current sheet into a chain of X-points and islands
 - Growth rate scales as $S^{1/4}V_A/L$
 - The reconnection rate asymptotes at \sim 0.01 for large S (!)
- Most simulations of the plasmoid instability assume reconnection with symmetric upstream fields
 - Simplifies computing and analysis
 - Plasmoids and outflows interact in one dimension
- Asymmetry affects the scaling and dynamics of the plasmoid instability
- In 3D, flux ropes twist and writhe and sometimes bounce off each other instead of merging
- Asymmetric inflow reconnection simulations offer clues to 3D dynamics

Asymmetric Magnetic Reconnection (in 2D)

- Asymmetric inflow reconnection occurs when the upstream magnetic fields and/or plasma parameters differ
 - Dayside magnetopause
 - ► Tearing in tokamaks, RFPs, and other confined plasmas
 - Merging of unequal flux ropes
 - 'Pull' reconnection in MRX
- Asymmetric outflow reconnection occurs, for example, when outflow in one direction is impeded
 - Flare/CME current sheets
 - Planetary magnetotails
 - Spheromak merging and 'push' reconnection in MRX
- Asymmetric inflow reconnection often occurs at the boundaries between different plasmas
- Asymmetric outflow reconnection often occurs during explosive events

Cassak & Shay (2007) consider the scaling of asymmetric inflow reconnection

- Assume Sweet-Parker-like reconnection with different upstream magnetic fields (B_L, B_R) and densities (ρ_L, ρ_R)
- The outflow velocity scales as a hybrid Alfvén velocity:

$$V_{out} \sim V_{Ah} \equiv \sqrt{\frac{B_L B_R \left(B_L + B_R\right)}{\rho_L B_R + \rho_R B_L}} \tag{1}$$

The X-point and flow stagnation point are not colocated

NIMROD simulations of asymmetric plasmoid instability

Reconnecting magnetic fields are asymmetric:

$$B_{y}(x) = \frac{B_{0}}{1+b} \tanh\left(\frac{x}{\delta_{0}} - b\right)$$
(2)

- Magnetic asymmetry factor: $R_0 \equiv \frac{B_L}{B_R} \in \left\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\right\}$
- Uniform initial density
- $\beta_0 = 1$ in higher magnetic field upstream region
- A small number of localized initial magnetic perturbations placed asymmetrically along z = 0 near center of domain
- Domain: up to $-150 \le x \le 150$, $-16 \le z \le 16$
- (Hybrid) Lundquist numbers up to 10⁵
- Boundary conditions: periodic along outflow direction and conducting wall along inflow direction

NIMROD solves the equations of extended MHD using a finite element formulation (Sovinec et al. 2004, 2010)

 In dimensionless form, the resistive MHD equations used for these simulations are

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times (\eta \mathbf{J} - \mathbf{V} \times \mathbf{B}) + \kappa_{divb} \nabla \nabla \cdot \mathbf{B}$$
(3)

$$\mathbf{J} = \nabla \times \mathbf{B}$$
 (4)

$$abla \cdot \mathbf{B} = 0$$
 (5)

$$\rho\left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}\right) = \mathbf{J} \times \mathbf{B} - \nabla \rho - \nabla \cdot \rho \nu \nabla \mathbf{V}$$
(6)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \nabla \cdot D \nabla \rho \qquad (7)$$

$$\frac{\rho}{\gamma - 1} \left(\frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T \right) = -\frac{\rho}{2} \nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q} + Q \qquad (8)$$

 Divergence cleaning is used to prevent the accumulation of divergence error Mesh packing needed over longer portion of inflow direction

- X-points drift toward strong magnetic field upstream region
- Somewhat less resolution required along outflow direction than in symmetric case
- Higher resolution required in weak B upstream region than in strong B upstream region
- Preliminary simulations showed sloshing/oscillatory behavior
 - If a symmetric perturbation takes away δB from each side, then the strong field side will have a total pressure excess of $(1-R)B_0\delta B$
 - Resolved by using weaker, more localized perturbations

Plasmoid instability: symmetric inflow $(R_0 = 1)$

Plasmoid instability: asymmetric inflow ($R_0 = 0.25$)

Key features of symmetric inflow simulation

- X-points and O-points all located along z = 0
 - Makes it easy to find nulls
- X-points often located near one exit of each current sheet
 - Characteristic single-wedge shape
- There is net plasma flow across X-points
 - Flow stagnation points not co-located with X-point
 - The velocity of each X-line differs from the plasma flow velocity at each X-point (see Murphy 2010)
- Outflow jets impact islands directly
 - No net vorticity in islands and downstream regions
 - Less noticeable turbulence in downstream regions
- Outflow velocity ~5/6 of Alfvén speed

Key features of asymmetric inflow simulation

- Maximum outflow velocity is $\sim 2/3$ of V_{Ah}
- X-points vary in position along inflow direction
- ► Islands develop preferentially into weak **B** upstream region
- Outflow jets impact islands obliquely
 - Islands advected outward less efficiently
 - Net vorticity develops in each magnetic islands
- Downstream region is turbulent
 - Plasmoids impacting and merging with downstream island
 - Several X-points and O-points
- ► Very little happening in strong **B** upstream region
 - \blacktriangleright Less resolution needed than in weak ${\bf B}$ upstream region
- Secondary reconnection events (when islands merge) have asymmetric inflow and outflow

Onset study: there exist domain sizes for which symmetric cases are stable but asymmetric cases are unstable

- Moderate asymmetry is weakly destabilizing
- Strong asymmetry makes it harder for plasmoids to form
- The onset criterion is not given by a critical hybrid Lundquist number, S_{Ahc}

The reconnection rate is still enhanced for asymmetric cases, but less enhancement with increasing asymmetry

What insights do these simulations provide for the 3D plasmoid instability?

- Daughton et al. (2011): plasmoids in 3D will be complicated flux rope structures
- Outflow jets will generally impact flux ropes obliquely
 - Momentum transport from outflow jets to flux ropes may be less efficient
 - Merging between colliding flux ropes may be incomplete
- Important questions:
 - How does the plasmoid instability behave in 3D?
 - ▶ What is the reconnection rate? Is it 10⁻³, 10⁻², or 10⁻¹?
 - How do reconnection sites interact in 3D?
 - What mistakes are we making by using 2D simulations to interpret fundamentally 3D behavior?
 - How will these effects affect statistical models of islands?
 - Fermo et al. (2010), Uzdensky et al. (2010), Huang et al. (2012), Loureiro et al. (2012)

- We compare simulations of the plasmoid instability with symmetric and asymmetric upstream magnetic fields
- ► Features of the asymmetric plasmoid instability include:
 - X-point positions not all at same location along inflow direction
 - Islands develop into the weak B upstream region
 - Outflow jets impact islands obliquely
 - Less efficient outward advection of islands
 - Net vorticity in each island
 - Turbulence in the downstream region
 - The reconnection rate is still enhanced for the asymmetric case, but there's less enhancement for greater asymmetry
- The asymmetric plasmoid instability provides hints for how the plasmoid instability occurs in 3D

- Asymptotic matching analysis to determine the onset criterion and properties of the linear asymmetric plasmoid instability
 - What is the growth rate as a function of asymmetry and resistivity/Lundquist number?
 - What is the eigenmode structure?
- Could features from these simulations be observed in solar, space, or laboratory plasmas?
- How does the transition to collisionless reconnection occur during the asymmetric plasmoid instability?
- ▶ Long term: 3D simulations of ≥2 competing reconnection sites