Evidence in White Light of Post-CME Current Sheets - Mostly Observational

David Webb

ISR, Boston College

OUTLINE

- Review previous results of SMM \& LASCO WL rays trailing CMEs
- Lifetimes, lengths (heights) of ray
- Comparison with Lin \& Forbes model
- SOHO-era/ISSI/CFA work
- LASCO/UVCS Catalog
- Near-Surface Topology \& Evolution
- Density \& widths as $f($ height, time), height evolution of CS \& X-point, inflows, speed of blobs - above \& below X-point
- Compare models (numerical - MHD \& analytical) with observations
- Steady vs bursty reconnection in CS
- Future Work

Review of Webb et al., 2003 Study of SMM Post-CME Rays

- Background

Webb, Burkepile, Forbes, \& Riley, JGR, 108-A12 (2003)
IP Magnetic Flux Buildup Problem
Observational Evidence of Reconnection/Disconnection
Eruptive Flare Models \& Current Sheet Development:

- Basic CSHKP model
- Developed by, e.g., Lin \& Forbes (JGR, 2000)
- Approach

Measure Rays Trailing SMM Concave-Outward CMEs
Test the Hypothesis that Rays are Current Sheets due to Reconnection following CME/Flux Ropes

- Results

Measured Parameters of Transient Rays
Compare with Model Predictions

Parameters that can be Measured in White Light Observations to Test the Lin \& Forbes Model

Current sheet length = q - p
Lin and Forbes, JGR (2000)

L\&F Model Current Sheet Evolution for a Set of Parameters $\boldsymbol{\rightarrow} \mathrm{M}_{\mathrm{A}}=\mathbf{0 . 1}$

CME of November 20-21, 1988

Summary of SMM WL Rays Study

- Previous Study Using SMM C/P Obs., 1984-1989:
~10\% of SMM CMEs followed by evidence of disconnection Half (26) of these C-O events had new, transient, late rays
- Analysis of Transient Rays to Test Hypothesis \rightarrow Rays are Current Sheets Widths $=2.5^{\circ}\left(2.2 \mathrm{R}_{\mathrm{S}}\right)$
CME \& ray axes offset by $\sim 9^{\circ}$
Most rays coaxial with C-O \& non-radial (equatorward)
- Ray Lifetimes: ~8 hr.
Δt, Back of C-O to onset of ray: 3.8 hr . Δt, Back of C-O to end of ray: >11.6 hr.
- Ray Lengths: 3.25 to >11.3 R_{S}

Large Range

- Comparison w/ Lin \& Forbes Model:

Widths consistent with narrow, dense CSs
Lengths generally consistent, but
H, t evolution of base and top of CS did not agree

WHAT NEXT?

- Study SOHO-era Data

- Examine near-surface topology \& evolution
- Evolution from surface to $30 \mathbf{R}_{\mathrm{S}}$

Source region (EIT, TRACE, Ha, Hinode, etc.)
Arcade development (MLSO, EIT, X-ray)

- Use ray light curves to compare w/ kinematics, energy, etc. in models

- ISSI Workshop, CFA \& Beyond

- Origin \& evolution of CSs \& associated eruptive events from surface through interplanetary space;

Goal: Develop an empirical description
What do we need?
Ne \& widths as f(height, time), height evolution of CS \& X-point, inflows, speed of blobs - above \& below X-point

- Compare models (numerical- MHD \& analytical) with observations
- Identify the CS heating source
- CSs in flares \& relation to CMEs
- Steady vs bursty reconnection in CS?
- Is CS broadening and/or the plasma blobs due to tearing mode turbulence or Petschek-type reconnection, or both vs time?

Examples: 7 Sept. $2005 \rightarrow$ No SOHO Data; MLSO Observations only

MK4 pB Corona
 PICS

He 10830A CHIP

Determining p and q for Sept. 2005 CS

First time \rightarrow determine extent of CS from top of arcade to base of flux rope

Procedure for determining p and q analytically: Fit data to lines near inflection points. The intersection of the lines is taken to be p or q.

Results for Sept. 2005 CS

- Narrowest ray width is ~ 0.05 Rs ($37,000 \mathrm{~km}$)
- No evidence for outward motion of the X-point, or diffusion region.
- Motion of CS top (q) is meas. from $0.27-0.89$ Rs and fit with a polynomial with final speed $780 \mathrm{~km} / \mathrm{s}$ and acceleration of $0.64 \mathrm{~km} / \mathrm{s}^{2}$
- Over this same time period the CS length ($q-p$) grows from 0.13 - 0.74 Rs; avg. growth rate $=377 \mathrm{~km} / \mathrm{s}$
- Future Work:
- Derive densities distributions of ray
- Compare ray kinematic \& mass characteristics with other studies and reconnection models

Bursty Reconnection in Current Sheet: 18-20 Nov 2003 Event Very fast CME/FR/ray (Lin et al., ApJ, 2005)

RHESSI X-ray Coronal Sources \& Current Sheets

RHESSI observation of 15 April 2002 flare

Work by Holman, Sui, Dennis, etc.

List of events that "show a compact X-ray source above the top of a roughly vertical current sheet in which magnetic reconnection was occurring":

2002 Feb 20
2002 Apr 14-15
2002 Apr 15
2002 Apr 16
2002 Jun 2
2003 Nov 3

Check for associated CMEs and UVCS data

First Clear View of CS Formation in Low Corona - Hinode XRT; 9 April 2008

"Cartwheel" CME observed by XRT $\rightarrow 09: 16$ to 10:11 UT

Filament eruption in STEREO EUVI-A. Dashed line \rightarrow radial direction from AR. Curved path \rightarrow trajectory of fil.

LASCO C2 images showing CME path beyond ~2.5 R. Dashed line \rightarrow radial direction AR. XRT FOV shown in upper left corner of each image.

Measured Inflow Velocities - EUV

> 18 November 2003 Event EIT - UVCS Lya - LASCO

Lin et al., ApJ (2003)
Inflow velocities 10 - 105 km/s at 1.7 Rs

Inflow Velocity White Light

Inflow speed:
 v ~ 15-25 km/s (3.5 R ${ }_{\mathrm{s}}$)

[Later: $25-30 \mathrm{~km} / \mathrm{s}$ driven by a disturbance from a distant CME]

Vrsnak et al., A\&A, 499, 905, 2009

Comparison of Models (CS characterized by Petshek-like reconnection geometry with diffusion region located at heliocentric distance \mathbf{R}_{DR}) \& Observations (excess density; Vrsnak et al.)

- polarization brightness, ray Poletto et al., Ann. Geophys., in press (2008)
- polarization brightness, corona Poletto et al. (2008)
- CS model results
- for $\mathrm{R}_{0}=1.1,1.3,1.5$
— model corona

UVCS:

\triangle Ciaravella et al., ApJ 575, 1116 (2002)

O Ko et al., ApJ 594, 1068 (2003)
\square Bemporad et al., ApJ 638, 1110 (2006)
x corona
Bemporad et al. (2006)

LASCO:
Ko et al., ApJ 594, 1068 (2003)

Summary: Comparison of Models \& Observations

- Very good match model/obs. of $n(\boldsymbol{R})$ slopes (independent of the assumed column-length λ)
- Various types of observations (e.g., mass-maps, UVCS, PB...) give similar results
- Observed inflow speed and ray morphology consistent with Petschek-like reconnection geometry
- Problems:
a) Unknown LOS-depth (column-length λ)
b) Unknown diffusion region height $\boldsymbol{R}_{\mathbf{0}}$

Ciaravella et al., ApJ (2002)

LASCO White Light CMEs-Rays Catalog

- CME speed, width; C-O; Ray; UVCS high T; Duration; Blobs; Is there a preexisting streamer?; Is a new streamer formed?
- Corresponding UVCS (A. Ciaravelli) or MLSO MK4 K-coronameter (J. Burkepile) data
- MK4 data useful in showing the early stages of CSs
- Make width and brightness (density) measurements as $f($ time, height) for some of best events observed with both MLO and LASCO.

Status of Catalog

- Serendipitous events from LASCO
- J. Burkepile original list for MLSO MK3 \& 4 data
- C. St. Cyr list of LASCO CMEs with C-O features: 1996- thru June 1998
- LASCO - UVCS: WL - UV Spectroscopy Study of Rays:
- Two comprehensive surveys:

Solar minimum \rightarrow LASCO July 1996- June 1998
Solar maximum \rightarrow LASCO all of 2001

- Ciaravella, Giordano \& Raymond UVCS CME list through 2005

WL-UV Spectroscopy of Post CME Rays \rightarrow CSs

Composite image of LASCO C2 and UVCS images for ray observed on 1998 May 22. The narrow images are O VI 1032 (left) and Si XII 520 (right) at several slit positions. UVCS slit images typical of synoptic program.

LASCO - UVCS Rays; CSs Results

- 157 WL ray events selected

Mainly from minimum (74) \& maximum (83) samples but also a few others
~40\% had appropriate UVCS data, usually synoptic scans
Searched for coaxial, narrow, bright features in spectra
[Fe XVIII] line best signature (hot); rarely detected except during CMEs Also HI, O VI, Si XII emission

- 60 LASCO rays detected in UVCS spectra:

34 had no [Fe XVIII] in the spectral range
26 had [Fe XVIII] in the spectral range
10 had [Fe XVIII], 8 of which had Si XII
16 had no [Fe XVIII] , 9 of which had Si XII

- 18 additional CME/rays with [Fe XVIII] selected from UVCS CME catalog, 11 of which had Si XII emission

12 had WL rays

- So, 78 rays with WL images and UV spectra analyzed:
- Rays with [Fe XVIII] emission usually occurred during maximum
- Wide range of UV properties with no strong corr. with associated CME speed, delay time, energy or morphology.

THE END

Linker et al.* model run for v~400 km/s at $3 \mathrm{R}_{\mathrm{s}}, \mathrm{M}_{\mathrm{A}}=0.1$

a) Mag. flux function at 17 hr .

b) Simulated pB image at same time

H-t plot of q and p as in L\&F. Thus, $\boldsymbol{q}-\boldsymbol{p}=$ length of current sheet

* Linker et al., Phys. Plas. (2003)

18 March 1999 - Yokoyama et al. (2001) event

 EIT inflow/CME/FR/broad ray(?)

A Solar Minimum Sample: 1996-1997

Occurrence Rates

- 224 CMEs with concave-out structure (C. St Cyr est. 40\% of CMEs had C-O)
- 20\% (45/224) had rays
- Suggests that $\sim 10 \%$ of all CMEs have observable CSs
- likely depends on observability factors such as how close CME/flux rope is to skyplane, tilt of CS, \& background.
- If this fraction holds during other years of cycle \rightarrow rays/CSs more common feature of CMEs than thought!

Other characteristics

- CMEs (1996-1997) assoc. with the rays had wide range of speeds \& widths
- Average duration of 27 rays = 17.7 hours
- Many of these CMEs were blowouts of pre-existing streamers
- for 14 of these I could find a new streamer appearing later
- these appeared on average ~ 1 day after the CME onset

